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1 Accretion equations

See reviews: Yuan-Narayan 2014 [1], Abramowicz-Fragile 2013 [2], Lasota 2015 [3], NDAF review
Angular velocity Ω = vφ/r, Keplerian angular velocity: Ω2

K = GM/r3, vK = ΩKr. l =
r2Ω = rv is the specific angular momentum. If rigid rotation, l ∝ r2, if Keplerian, l =

√
GMr,

constant angular momentum l = constant implies Ω ∝ r−2. Pressure P = c2sρ, surface density
Σ =

∫ +H
−H ρdz ' 2ρH. Consider that only ρ varies with z. The only stress tensor component is

τrφ = −νρσrφ, with ν the viscosity and the shear σrφ = r∂rΩ
1.

∂r(rvρ) = 0 (1.1)

v∂rv − r(Ω2 − Ω2
K) = −1

ρ
∂rP (1.2)

ρv∂r(r
2Ω) =

1

r
∂r
(
νρr3∂rΩ

)
(1.3)

1

ρ
∂zP = −GMz

r3
(1.4)

ρv

(
∂re−

P

ρ2
∂rρ

)
= νρr2 (∂rΩ)2 − q− = q+ − q−, (1.5)

with q+ = νρr2 (∂rΩ)2 the heating via viscous dissipation and q− the cooling processes. Writing
the left hand side of the above equation as qadv = ρvT∂rs = ρv

(
∂re− P

ρ2
∂rρ
)
, the advective

cooling rate, we can write the above equation as

qadv = q+ − q− = fq+ (1.6)

f = qadv/q+ = 1−(q−/q+) measures the relative importance of advection. Out of the total heat
energy q+ released by viscous dissipation per unit volume per unit time, a fraction f is advected
and the rest (1− f) is radiated.

One can write P ∝ ργ , P = c2sρ and e = c2s/(γ − 1).
Eq. 1.1 can be integrated as

Ṁ = −2πΣrv (1.7)
1Other components of the stress tensor ca be present, but vanishes after averaging the fluid equations over z and

φ, see Gordon Ogilvie lectures.
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Optically thick (τ � 1) Optically thin (τ � 1)
Radiative dominated (q+ = q−) SSD SLE
Advective dominated (qadv = q+) Slim disk ADAF

Table 1: Accretion scenarios

Solving Eq. 1.4 for P = c2sρ, we get

ρ = ρ0 exp

(
−

Ω2
K

2c2s
z2
)

(1.8)

We thus identify H ' cs/ΩK .
Employing Eq. 1.7, we can integrate Eq. 1.3 as

Σv∂r(r
2Ω) =

1

r
∂r
(
νΣr3∂rΩ

)
⇒ −Ṁ

2π
r2Ω = νΣr3∂rΩ +K (1.9)

with K a constant, related with the angular momentum at some radius j0. The above equation
can be written as

Ṁ
(
r2Ω− j0

)
= −2πνΣr3∂rΩ (1.10)

Shakura-Sunyaev viscosity prescription:

τrφ = −νρσrφ = −αP, ν = αcsH ' α
c2s

ΩK
(1.11)

or 2
3α instead of α.
Radiative efficiency:

ε =
L

Ṁc2
(1.12)

When Ṁ is very low, the gas density ρ is also low and the radiative cooling rate q− (which
decreases rapidly with decreasing ρ) becomes negligibly small. The viscous heating rate is then
balanced primarily by energy advection rather than cooling, and f ' 1. Increasing Ṁ , there is a
moment at ṀADAF when f = 0. Thus, ADAF works for lower Ṁ . Between ṀADAF and ṀLHAF ,
qc + q+ = q−, with qc the compression cooling, and f < 1.

Also
qadv =

1

2
fαΣcs(r∂rΩ)2 ' fα P

ΩK
(r∂rΩ)2 (1.13)

Optical depth:
τ = ΣHκ (1.14)

with κ the opacity coefficient. Large Σ implies optically thick mediums. Optically thick means
that photons thermalize and the emitted spectrum is black body. Otherwise, it is dominated by
other non-thermal processes, such as synchrotron.
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2 Overview of accretion scenarios

Cold flows (temperature lower than the virial temperature), optically thick:

• SSD, or Thin disk: geometrically thin (H � r), optically thick, Keplerianly rotating Ω = ΩK ,
viscous heating is balanced by the radiative cooling, q+ = q− (f = 0). Applies to X-
ray binaries and bright AGNs. Sub-Eddington rates, luminosity efficiency of approximately
ε ∼ 10%.

• Slim disk: geometrically slim (but no thin) (H . r), optically thick. Super-Eddington rates.
Most of the photons are carried by the accretion flow and finally fall into the BH: the main
cooling mechanism is advection rather than radiation. Advection dominated due to long
radiative diffusion time, unlike ADAF, which is advection dominated due to long cooling
time. Therefore, it does not radiates photons efficiently, ε < 0.1. f = 1.

• NDAF: mostly same than slim disk, but neutrino cooling dominates

• Thick disk (polish doughnouts): H > r, high accretion rate. Is it NDAF? Radiatively
inefficient, ε � 0.1. Only gravity and advection, does not present radiation nor viscosity.
Simplest accretion disk. f not defined, I think. l constant at the center, Keplerian at the
outer parts.

Hot flows (temperature close to the virial temperature), optically thin:

• SLE (Shapiro et al 1976): hot accretion flow, optically thin, two temperatures. But thermally
unstable, so is unlikely to be realized in nature. q+ = q− (f = 0).

• ADAF: geometrically thick (H ∼ r), optically thin. Extremely high temperature. The main
cooling mechanism is also advection rather than radiation. ε � 0.1. Viscously dissipates
accreted energy, which goes into heating. It applies e.g. to Sgr A*. f = 1.

• LHAF (luminous hot accretion flow): an extension of an ADAF to accretion rates above the
original range of validity of the ADAF solution, leading to high efficiencies and luminosities,
ε ∼ 0.1. f < 0.

Hot accretion flows should have strong outflows and jets. Two variants of ADAF: adiabatic
inflow-outflow solution (ADIOS) and convection-dominated accretion flow (CDAF), which empha-
size the roles of two distinct physical phenomena in hot accretion flows: outflows and convection.
Also electron ADAF (eADAF), with even dimmer luminosities, because even electrons are also
advective dominated.

The reason ADAFs are advection-dominated is that the accreting gas has a low density (because
of the low mass accretion rate) and the thermal structure of the plasma is two-temperature. Because
of the low density, very little of the heat energy in the ions gets transferred to the electrons through
Coulomb collisions. Since the ions hardly radiate at all, they retain their thermal energy and advect
essentially all of it to the center ("Why Do AGN Lighthouses Switch Off?").

3 Shakura-Sunyaev disk (SSD)

Assumptions
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Figure 1: Accretion models, from Yuan, Narayan 2014 [1].

• Assume a thin disk. Since H ' cs/ΩK , H/r ' cs/vK . Thus, it presents a large Mach number
(in the azimuthal direction), vK/cs. Actually, v ∼ ν/r ∼ α(H/r)cs (as explicitly checked
later). The orbital motion is highly supersonic while the accretion flow is highly subsonic.
Being thin H � r implies that it presents small pressure and is cold (cs � vK). Thus,
v, cs � vK .

• Assume balance between viscosity heating and radiative cooling, q+ = q−. This condition is
not completely independent from the above one, since qadv/q+ ∼ H/r, negligible for a thin
disk.

Since v, cs � vK , thus from Eq. 1.2 we have Keplerian motion, Ω = ΩK . From Eq. 1.9, using
the fact that Ω = ΩK , we get

νΣ =
Ṁ

3π

[
1−

√
r∗
r

]
(3.1)

Note that Ṁ ∝ αΣ. Since q+ = q−, the radiative cooling is given by

0 = πµνσ
µν −∇ · ~F = νρ(r∂rΩ)2 − ∂zF, ⇒ F =

1

2
νΣ(r∂rΩ)2 (3.2)

and thus

2Hq− = 2F = νΣr2 (∂rΩ)2 =
3GMṀ

4πr3

[
1−

√
r∗
r

]
(3.3)

and the flux (scholarpedia)

F =
3GMṀ

8πr3

[
1−

√
r∗
r

]
(3.4)
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q− = ∇ · ~F ' F/H denotes the rate at which energy is emitted per unit area. One can define an
effective temperature as F = σT 4

eff

On the other hand, ~F = 4
3(∇σT 4)/(ρκ) ' 16

3 σT
4/τ , with τ = κρH = Σκ/2.

The luminosity is given by

L = 2π

∫ H

−H
dz

∫ ∞
r∗

dr r q− = 2π

∫ ∞
r∗

dr νΣr3 (∂rΩ)2 (3.5)

=
3

2

GMṀ

r∗

∫ ∞
1

dx

x2

(
1−

√
1

x

)
=

1

2

GMṀ

r∗
(3.6)

(e.g. Blaes 2002) If the Innermost Stable Circular Orbit (ISCO) radius is taken as r∗, rISCO = 3rS ,
with rS = 2GM/c2 the Schwarzschild radius, we get

ε =
L

Ṁc2
=

1

12
∼ 0.1, (3.7)

as states the classical result. Other choices of the radius lead to 1/6 or 1/16 instead. Note that
the above computation does not need to assume the ν parameterization with α.

At large radii, νΣ ' Ṁ/3π, ν ' 2
3rv. When H ∼ r, v ∼ αcs.

4 ADAF

eADAF if Ṁ . Ṁc,eADAF ' 0.001α2ṀEdd, with ṀEdd = 10LEdd/c
2.

ADAF if Ṁc,eADAF . Ṁ . Ṁc,ADAF ' 0.1α2ṀEdd.
LHAF if Ṁc,ADAF . Ṁ . Ṁc,LHAF ' 0.07αṀEdd

5 Abramowicz et al. 1995

Following the work of Abramowicz et al. 1995. [4], see also Lasota 2015 [3].

Qadv =
Ṁ

2πR2
c2sξ (5.1)

Q+ =
3

4π
Ṁ (5.2)

For optically thin, we employ only bremssthralung:

q− =
4
√

2

π3/2
nen̄σT cαfsmec

2

(
T

mec2

)1/2

(5.3)

or Q− = 2Hq−,

Q− = AHρ2T 1/2 =
1

4
AΣ2T 1/2H−1, A = 1.24× 1021erg cm−2 s−1 (5.4)

For optically thick,

q− =
8σT 4

3Hτ
(5.5)
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ν =
2

3
αcsH (5.6)

r = R/RS (
H

R

)2

= 2r
c2s
c2

(5.7)

Ṁ = 2παΣ|v|R (5.8)

Far enough from the inner part of the disk,

νΣ =
Ṁ

3π
(5.9)

ν = 2
3 |v|R

Ṁ = 2παΣcsH (5.10)

ṁ =
√

2r3/2αΣκ
c2s
c2

(5.11)

c2s
c2

=
1√

2r3/2
ṁ

αΣκ
(5.12)

Ṁ

2πR2
c2sξ = Q+ =

3

4π
Ṁ −Q− (5.13)

ξṁ2 1√
2rακΣ

=
3

4
ṁ−Q−

κr

2GMc
R2 (5.14)

5.1 Optically thin

ξṁ2 =
3

2
√

2

√
rακΣ ṁ−Br2α (κΣ)3 (5.15)

with B = 2
√
2

π3/2

√
me/mpαfs = 1

2
√
2
A
√
mp

κc2
= 1.22× 10−4

Solve the above equation for ṁ. Two limiting cases:

• ADAF limit.

Neglect radiation cooling, qadv ' q+,

ṁ ' 3

2
√

2

√
r

ξ
ακΣ. (5.16)

• SLE limit.

Neglect advective cooling, , q+ ' q−,

ṁ ' 2
√

2

3
Br3/2 (κΣ)2 . (5.17)
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Both solutions ṁ+ merge at a critical maximum density

Σmax =
9

32

α

κBξr
(5.18)

which implies a maximum accretion rate of

ṁmax =
27

64
√

2

α2

Bξ2
√
r
' 3.5× 103

α2

ξ2
√
r

(5.19)

Equating the ADAF and SLE limits gives a ṁ larger by a factor 4.
One should require that the Bondi accretion rate does not exceed the above maximum accretion

rate in the ADAF scenario

ṀB = 2παλρ∞
(GM)2

c3s,∞
(5.20)

or

ṁB =
1

2
λαnb,∞σT c tB(M) (5.21)

In spherical accretion, λ goes from ∼ 0.1 to ∼ 1 from γ = 5/3 to γ = 1.
Using the disk expressions from above, one finds a similar expression

ṁB = λαnb,∞σT c tB(M) (5.22)

At a Bondi radius, RB = GM/c2s, tB = RB/cs = GM/c3s, rB = RB/RS = c2/(2c2s),

ṁmax,B =
27

64

α2cs
Bξ2c

(5.23)

ṁB . ṁmax,B implies

σTn∞RS

(
c

cs,∞

)4

.
27

32

α2

Bξ2
(5.24)

5× 10−4(1 + z)3
(

1K

T∞

)2( M

M�

)2 ξ2

α
. 1 (5.25)

Note that a proper evaluation of these models requires more complex physics. ADAF and SLE
require two temperatures for the ions and electrons.

5.2 Optically thick

For optically thick,

Q− =
16σT 4

3κRΣ
(5.26)

Take κR = κT .
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6 Self-Similar Solution

Narayan, Yi 1994 [5]
It recovers SSD for f = 0, and applies to ADAF for f = 1.

ε′ = ε/f, ε =
5/3− γ
γ − 1

(6.1)

v ' − 3α

5 + 2ε′
vK (6.2)

Ω2 ' 2ε′

5 + 2ε′
Ω2
K (6.3)

c2s '
2

5 + 2ε′
v2K (6.4)

and v/cs = −3
2αcs/vK

H '
√

2

5 + 2ε′
r (6.5)

Ṁ =
6παΣ

√
GMr

5 + 2ε′
(6.6)

or, in dimensionless quantities,

ṁ =
3√
2

αΣ

5 + 2ε′
κ
√
r̂ (6.7)

Note that it has the same dependences than Eq. 5.16, differing only by a constant factor 5/2
(for ε = 0 and ξ = 1).

ṁ = Ṁc2/LEdd, r̂ = r/rSch, κ = σT /mp

LEdd =
4πGMmpc

σT
(6.8)

7 Slim disk

Luminosity can be approximated as [6]

L = 2LEdd

(
1 + ln

(
1

50

Ṁc2

LEdd

))
(7.1)

see a derivation in [3]
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