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1 Introduction

In this document, we propose a simplified vehicle dynamics model that captures the key dynamic effects
relevant to driving behavior, designed to balance physical accuracy with computational efficiency.

The model essentially describes 2D motion but takes into account road inclination and road bank effects
in the computation of forces. It takes into consideration resistance forces such as aerodynamic, rolling and
gravitational, as well as the effect of tires friction through the slip angle and cornering stiffness. The drive
force is provided through an engine torque curve which depends on the angular velocity of the wheels. The
model assumes a set of parameters which is summarized in Table 1.

We consider three dynamic variables: longitudinal and lateral velocities vx, vy and yaw rate ψ̇ (see Tab.
2). In the following sections dynamic equations for each of these variables are presented. These variables
can be integrated to get the longitudinal and lateral displacement and yaw respectively. On the other hand,
driver input control is modeled via three quantities: throttle ut, brake ub and steering uδ, see Tab. 3.

The vehicle dynamics presented in this document is mainly based on the modeling from [1, 2, 3, 4].

Symbol Description Units

m Mass of the vehicle kg
Iz Inertia moment in the vertical direction m2kg
lf , lr Front and rear axle positions from the center of mass m

Lx, Ly, Lz Vehicle dimensions m
rw Wheel radius m
Cδ Steering coefficient -
Tb Brake torque N m
Te Engine torque curve N m
G Gear drivetrain ratio -
Cd Aerodynamic drag coefficient -

Cαf , Cαr Cornering stiffness coefficient for front and rear tires N/rad
µ Coefficient of friction between tire and road -

Table 1: Parameters assumed in this model.
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Symbol Description

ψ̇ Yaw rate
vx Longitudinal velocity
vy Lateral velocity

Table 2: Dynamic variables considered in this model.

Symbol Description Range
ut Throttle [0, 1]
ub Brake [0, 1]
uδ Steering [−1, 1]

Table 3: Driver input controls.

2 Lateral dynamics

From Newton’s second law for motion along the lateral axis, we have [1]

m
(
v̇y + ψ̇vx

)
= Fyf + Fyr + Fbank (1)

where Fyf and Fyr are the lateral forces at the front and rear wheels respectively, and Fbank is the gravi-
tational force due to the road bank angle. On the other hand, moment balance about the z axis yields the
equation for the yaw dynamics as

Izψ̈ = lfFyf − lrFyr (2)

with lf and lr are the front and rear axle distances.
The bank angle force can be written as

Fbank = mg sinϕ (3)

with the bank angle ϕ defined according to the sign convention shown in right panel of Fig. 2.
Experimental results [1] show that the lateral tire force of a tire is proportional to the slip angle for

small slip angles, which is defined as the angle between the orientation of the tire and the orientation of the
velocity vector of the wheel θvf and θvr for front and rear wheels respectively. Thus, the lateral forces can
be written as

Fyf = 2Cαf (δ − θvf )

Fyr = −2Cαrθvr
(4)

where δ is the steering angle and Cαf and Cαr are the cornering stiffness coefficients of front and rear tires,
which can be obtained from [5]. θvf and θvr can be approximated as

θvf =
vy + lf ψ̇

vx

θvr =
vy − lrψ̇

vx

(5)

Combining Eqs. 1, 2, 3, 4 and 5 we get the final set of dynamic equations for lateral movement:

v̇y = −2(Cαf + Cαr)

mvx
vy −

[
vx +

2(Cαf lf − Cαrlr)

mvx

]
ψ̇ +

2Cαf

m
δ + g sinϕ (6)

ψ̈ = −2(Cαf lf − Cαrlr)

Izvx
vy −

2(Cαf l
2
f + Cαrl

2
r)

Izvx
ψ̇ +

2Cαf lf
Iz

δ (7)

2



Figure 1: Left: diagram of the lateral dynamics showing the local reference frame and the yaw angle. Right:
bank angle ϕ definition convention. Both images extracted from [1].

The steering angle δ can be related to the steering wheel angle input uδ defined between 0 and 1 as
lineraly proportional, δ = Cδuδ.

Another quantity of interest is the minimum turning radius rmin at a given speed. This can be estimated
from the fact that at turning, acceleration can be written as a = v2/r. The maximum acceleration will come
from the friction component amax = µg, with µ the dimensionless coefficient of friction between tire and
road, and thus rmin can be written as

rmin =
v2

µg
(8)

3 Longitudinal dynamics

From Newton’s second law in the longitudinal component of movement we get [2]:

m
(
v̇x − ψ̇vy

)
= Fdrive − Fbrake − Fload (9)

where Fdrive is the driving force from the engine, Fbrake the braking force and Fload the total resistance load
force. The latter includes aerodynamic resistance Faero, rolling resistance Froll and gravitational force due
to road inclination Fg

Fload = Faero + Froll + Fg (10)

The aerodynamic force

Faero =
1

2
ρACdv

2
x (11)

where ρ is the air density, A is the frontal area of the vehicle and Cd is the aerodynamic drag coefficient.
The frontal area A is around the 80% of the area calculated from the vehicle width and height for passenger
cars [1], i.e. A ≃ 0.8LyLz.

The rolling resistance force can be written as proportional to the normal force [3]:

Froll = µ mg cosα (12)

with α the inclination angle of the road. The gravitational force due to road inclination is given by

Fg = mg sinα. (13)

Lastly, the drive force is proportional to the torque produced in the engine [2]
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Figure 2: Diagram of the longitudinal dynamics showing the relevant forces, extracted from [4].

Fdrive = ut
G

reff
Te(ωe) (14)

where ut is the throttle input (between 0 and 1), G is the gear drivetrain ratio, reff the effective wheel
radius, which can be approximated to the wheel radius reff ≃ rw [1], and Te(ω) is the engine torque. This
quantity is provided by the torque powertrain curves and is determined by the engine angular velocity ωe.

The torque curve can be approximated by a second order polynomial, whose coefficients depend on the
type of engine [2]. The angular velocity of the engine can be written in terms of the velocity as

ωe =
Gvx
reff

(15)

Finally, the braking force can be written as

Fbrake = ub
Tb
reff

(16)

where ub is the brake input (between 0 and 1), and Tb the brake torque. Combining all previous equations,
we get a dynamic equation for the longitudinal acceleration:

v̇x = ψ̇vy +
1

m

(
ut

G

reff
Te(ωe)− ub

Tb
reff

− 1

2
ρACdv

2
x

)
− g (µ cosα+ sinα) (17)

4 Discussion

In this document we have presented a simplified vehicle dynamic model which aims to capture the essential
driving behavior. We discuss in this section some relevant aspects of its implementation.

When integrating the dynamic model into a driving simulator like CARLA [6], all required dynamic
information should be accessible from the simulator. That information is in principle available either from
the libcarla side or from its python API. We can obtain location and orientation from a CARLA actor through
its actor.get_transform method. From its roll and pitch, we can derive the road inclination and road bank
angles. We can also access velocity and angular velocity of the actor through the actor.get_velocity and
actor.get_angular_velocity methods. The attribute actor.bounding_box can be used to get vehicle
dimensions. Through the method actor.get_physics_control we can get access to other parameters such
as the mass, torque curve or gears. Other vehicle variables such as axle positions, wheel radius, brake torques,
as well as the drag, friction and cornering stiffness coefficients should be provided independently.

Some simplifications have been assumed through the derivation of the above equations for the sake of
simplicity but could be relaxed for more accurate results. For instance, the cornering stiffness behaves
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linearly only for small slip angles α, i.e. Fy ≃ Cαα, as in Eq. 4. But for relatively large angles, a non-linear
relation holds, Fy = fα(α) [5]. Also, the presence of camber angle would have an impact in the estimation
of the lateral force [5]. Steering angles are assumed to be the same for the front wheels, but an Ackermann
geometry could be considered so that the inner steering angle is lower than the outer one.

Friction is implicitly considered in lateral forces through the cornering stiffness, and thus should be
related to the coefficient of friction µ. However, given that the cornering stiffness formulae are empirically
set from experiments rather than from first principles, it is non trivial to find a relation between them. This
means that there could be configurations of parameters (some specific road conditions for instance) which
are not completely consistent given that these parameters are assumed to be independent but are actually
correlated.

Finally, it is worth it to mention that this model is an oversimplification of a much more complex problem,
reducing all dynamics of a driving vehicle to a single object. In reality, the dynamic system considered is
composed by a complex set of components interacting among them with constraints. In order to further
expand this proposal to a more accurate 3D model, a dynamic system of particles should be considered,
treating each wheel individually, having force and moment equations for each of them, considering suspension
and chassis elements and consistently including collisions. This kind of accurate modeling would be more
physically accurate at the expense of being more costly computationally, and resembles what is performed
in some simulators such as the Chrono simulator [7].
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Čermák, editors, High Performance Computing in Science and Engineering, pages 19–49, Cham, 2016.
Springer International Publishing.

5


	Introduction
	Lateral dynamics
	Longitudinal dynamics
	Discussion

